SECTION 1 GENERAL INFORMATION

1-1. General

The R5361/5362/A series reciprocal frequency counters incorporate reciprocal operation and fractional count capabilities, which, in combination, enables a higher frequency resolution and measurement rate than previous models. In addition to frequency counting, the R5361/5362/A series are capable of measuring periods, positive pulse widths, and totalization. The period measurement feature uses a clock frequency of 10 MHz and fractional part multiplication of up to 100. It thus achieves a measurement accuracy equivalent to that obtained with an instrument using a clock frequency of 1 GHz.

The Calculation Unit (TR1644), BCD Output Unit with 4-digit D/A output (TR13001), and GPIB Adapter with 4-digit D/A output (TR13002) are optionally available to increase the measurement capability of the R5361/5362/A series. The TR13002 is designed to allow remote operation of all the front panel functions of the counters, except the trigger level control.

The **R5361/5362/A** series also have the following features:

- Low radiation design using the EMI technology.
- AC/DC power supply including battery operation capability (available with the optional **TR15801A/B**), except **R5361A/5362A**
- Panel set-up memory (with Option 39).
- Burst signal measuring capability.

1-2. Electrical Performance

Frequency measurement (FREQ. A)

Range:

60-1000 MHz (**R5361/5361A**) 60-3000MHz (**R5362/5362A**)

Gate time:

<10 ms (somewhere between 0.9 and 9 ms depending on input frequency)

<0.1 s (somewhere between 9 and 90 ms depending on input frequency)

- <1 s (somewhere between 90 and 900 ms depending on input frequency)
- <10 s (somewhere between 900 ms and 9 s depending on input frequency)
- <100 s (somewhere between 9 and 90 s depending on input frequency)

Number of digits displayed:

Gate time	Display digits		
	LSD OFF	LSD ON	
<10 ms	6 digits	7 digits	
<0.1 s	7 digits	8 digits	
<1 s	8 digits	9 digits	
<10 s	9 digits	9 digits MSD overflows	
<100 s	9 digits MSD overflows	9 digits 2 MSDs overflow	

(LSD: Least Significant Digit MSD: Most Significant Digit)

Unit display:

MHz, GHz

Accuracy:

 \pm 1 count \pm time base accuracy when the **LSD** is off.

 \pm fractional part measurement error \pm time base accu-

racy when the **LSD** is ON.

Execution time: Approx. 80 ms (to be included in sample rate except in

HOLD mode)

Frequency measurement (FREQ. B)

Range:

0.2 mHz to 10 kHz (direct input) when LPF is ON.

0.8 mHz to 100 MHz (1/4 prescaled) when LPF is off.

Gate time:

<10 ms (somewhere between 0.9 and 9 ms depending

on input frequency)

<0.1 s (somewhere between 9 and 90 ms depending on input frequency)

- <1 s (somewhere between 90 and 900 ms depending on input frequency)
- <10 s (somewhere between 900 ms and 9 s depending on input frequency)
- <100 s (somewhere between 9 and 90 s depending on input frequency)
- Note: 1. If the period of the input signal exceeds the value given in parentheses (for example, input frequency is below 111 Hz when range is <10 ms) when LPF is ON, the period of the input signal will be the gate time.
 - 2. If the 4 periods of the input signal exceed the value given in parentheses (for example, input frequency is below 444 Hz when range is <10 ms) with LPF off, the 4 periods will be the gate time.</p>
 - 3. The <10 ms, <0.1 s, or <1 ranges are reset if no input signal is applied for approx. 2 seconds. Use the <10 s or <100 s range when measuring a signal below 4 Hz with LPF off, or measuring a signal below 1 Hz with LPF ON.

Resolution:

Gate time	Resolution			
	Sine wave measurement mode	Square wave measurement mode		
<10 ms	1 kHz or higher	6 digits		
<0.1 s	100 Hz or higher	7 digits		
<1 s	10 Hz or higher	8 digits		
<10 s	1 Hz or higher	9 digits		
<100 s	0.1 Hz or higher	9 digits MSD overflows		

Unit display:

 μ Hz, mHz, Hz, kHz, or MHz

Accuracy:

 \pm trigger error \pm 1 count \pm time base accuracy

Execution time: Approx. 80 ms (to be included in sample rate except in

HOLD mode)

Period measurement (PERIOD B)

Range:

 $100 \ \mu s$ to $5000 \ s$ (direct input) when **LPF** is on.

10 ns to 1250 s (1/4 prescaled) when LPF is off.

Gate time:

<10 ms (somewhere between 0.9 and 9.0 ms depending on input signal period)

<0.1 s (somewhere between 9 and 90 ms depending on input signal period)

<1 s (somewhere between 90 and 900 ms depending on input signal period)

<10 s (somewhere between 900 ms and 9 s depending on input signal period)

<100 s (somewhere between 9 and 90 s depending on input signal period)

Note: 1. If the period of the input signal exceeds the value given in parentheses (for example, input signal period exceeds 9 ms when range is <10 ms) with LPF on, the signal period will be the gate time.

- 2. If the 4 periods of the input signal exceed the value given in parentheses (for example, input signal period exceeds 2.3 ms when range is <10 ms) with LPF off, the 4 periods will be the gate time.
- 3. The <10 ms, <0.1 s, and <1 s ranges are reset if no input signal is applied for approx. 2 seconds. Use the <10 s or <100 s range when measuring a signal period of 250 ms or more with LPF off, or measuring a signal period of 1s or more with LPF on.

Number of

digits displayed: 6 digits (<10 ms), 7 digits (<0.1 s), 8 digits (<1 s), 9

digits (<10 s), 9 digits (<100 s, with MSD overflow)

Unit display:

ps, ns, μ s, ms, s, or ks

Accuracy:

 \pm trigger error \pm 1 count \pm time base accuracy

Execution time: Approx. 80 ms (to be included in sample rate except in **HOLD** mode)

Time interval measurement (T.I. B positive pulse width measurement)

Measurement range:

200 ns to 9000 s

Multiplier (10ⁿ):

 10° , 10^{1} , 10^{2} , or 10^{3}

Time unit:

100 ns

Unit display:

ns, μ s, ms, s, or ks

Accuracy:

 \pm trigger error \pm resolution \pm time base accu-

racy

Totalize (TOT. B)

Measurement range:

DC to 50 MHz

Count capacity:

0 to 999999999

Input Specifications INPUT A

Input voltage range:

R5361/5361A

10mV rms to 5 Vrms (60-900 MHz) 20mVrms to 5 Vrms (900-1000 MHz)

R5362/5362A

10mVrms to 5 Vrms (60-1500MHz) 35mVrms to 5 Vrms (1500-2800 MHz) 50mVrms to 5 Vrms (2800-3000 MHz)

The maximum input level

of burst signal measurement is 500 mVrms.

Maximum 3 Vrms when ANS

switch is on.

Input protection fuse:

Blows at 12 Vrms for less than 1 minute.

Input coupling:

AC

Input impedance:

50 Ω (approx.)

Burst signal measurement:

t: Available with the **BURST** switch.

Noise rejection:

Superimposed noise is suppressed with the Au-

tomatic Noise Suppressor (ANS) switch.

(In the R5362/5362A attenuation is inserted

automatically in the 60 MHz to 1500MHz range.)

Level monitor:

Uses three LED indicators:

LOW (green): Comes on below the count

start level.

MED (green): Comes on at the count start

level.

HIGH (red): Comes on at approx. 5 Vrms.

INPUT B

Input coupling: DC or AC switch selectable

Cutoff frequency in AC mode: 10 Hz

Input voltage range:

	ATT. 0 dB	ATT. 20 dB		
10 kHz or below	25 mVrms-10 Vrms	500 mVrms-100 Vrms		
10 kHz-60 MHz	25 mVrms-1 Vrms	500 mVrms-10 Vrms		
60 MHz-100 MHz	25 mVrms-500 mVrms	500 mVrms-5 Vrms		

Input impedance:

More than 1 M Ω //less than 25 pF

Trigger level:

Approx. -1.2 V to approx. +1.2 V continu-

ously variable. Preset at approx. 0 V.

Trigger indicator:

LED indicator

Noise rejection:

10 kHz low-pass filter

Burst signal measurement: Available with the BURST switch activated.

Time Base

Internal reference frequency: 5 MHz

Frequency stability:

	·	Standard type	Option 20	Option 21	Option 22	Option 23
Aging rate *1		5×10 ⁻⁸ /day	2×10 ⁻⁸ /day	5×10 ⁻⁹ /day	2×10 ⁻⁹ /day *2	5×10 ⁻¹⁰ /day *2
		1 × 10 ⁻⁷ /month	8×10 ⁻⁸ /month	5×10 ⁻⁸ /month	2×10 ⁻⁸ /month *2	1 × 10 ⁻⁸ /month *2
Long-term stability		2×10 ⁻⁷ /year	1 × 10 ⁻⁷ /year	8×10 ⁻⁸ /year	5×10 ⁻⁸ /year *1	2×10 ⁻⁸ /year *1
Temperature characteristics (+25°C±25°C)		±1×10 ⁻⁷	±5×10 ⁻⁸	±5×10 ⁻⁸	±1×10 ⁻⁸	±5×10 ⁻⁹
Warmup *1 characteristics	30 minutes later	±1×10 ⁻⁷	±5×10 ⁻⁸	±4×10 ⁻⁸	±4×10 ⁻⁸	±4×10 ⁻⁸
	1 hour later	-	_	±2×10 ⁻⁸	±1×10 ⁻⁸	±1×10 ⁻⁸

Note: For the standard type, the warmup characteristic 10 minutes after power on is $\pm 2 \times 10^{-7}$

*2) Referred to the frequency 48 hours after power on

Internal reference output: Frequency: 10 MHz

Voltage: 1 Vp-p (approx.)

Impedance: 50 Ω (approx.) External reference input: Frequency: 1, 2, 5, or 10 MHz

Voltage: 1-5 Vp-p

Impedance: 500Ω (approx.)

General Specifications

Display digits: 9 decimal digits

Display: Green, 7-segment LED display with storage

capability.

Sample rate: Approx. 80 ms, 320 ms, 2.5 s, and **hold**

Self check: Counting operation check using the internal

reference signal.

Panel setting memory: Available when **OVEN** switch is on. Operating Environment: Temperature: 0°C to $+40^{\circ}\text{C}$

Relative humidity: 40% to 90%

Storage temperature: -20°C to $+70^{\circ}\text{C}$

Power requirements: 90-132 VAC (180-249 V specification

available), 50-400 Hz DC: +10 to +30 V

(**R5361A/5362A** series are AC op-

eration only, however.)

Power consumption: Not more than 30 W for DC operation

(R5361)

Not more than 33 W for DC operation

(R5362)

^{*1)} Referred to the frequency 24 hours after power on

Not more than 50 VA for AC operation

(R5361/5361A)

Not more than 55 VA for AC operation

(R5362/5362A)

Dimensions:

 $(H)88 \times (W)240 \times (D)360 \text{ mm (approx.)}$

Weight:

4.5 kg or less

1-3. Options and Accessories

When using the accessories, the TR13001 or TR13002, in the frequency counter, power the counter with the AC source.

OPT 39 Back-up Battery (Available on order)

Built-in Ni-Cd battery to back up the panel setting memory. Approx. 14-hour backup with 8-hour charge; 20-hour backup with 16-hour charge.

TR13001 BCD Data Output Unit (with D/A output)

Transfer method:

Digit parallel, through a 50-pin Amphenol

connector

Output digits:

6 digits of mantissa and 2 digits of exponent

(mantissa is switch selectable from high-order and

low-order data.)

Output:

TTL, active high

D/A output:

Output voltage:

0 V (readout: 0000) to +9.999 V

(readout: 9999)

Conversion digits: 4 LSDs of readout (Digit shift

available with TR1644).

Offset:

Not available (any offset setting

available with use of the TR1644.)

Resolution:

4096 points (approx. 2.5 mV per

point)

Output terminal:

BNC connector

Output impedance: $10 \text{ k}\Omega$ (approx.)

Attachable instruments:

Digital Recorder (TR6198), Spectrum Analy-

zer (TR4110 Series, TR4120)

TR13002 GPIB Adapter (with D/A output)

Standard:

IEEE Standard 488-1978