Table 1-2 Specifications

Frequency Characteristics

Waveforms: Sine, square, pulse, triangle, ramp.

Range: 0.001 Hz to 50.00 MHz (0.001 Hz to 19.99 MHz

for 20 and 80% duty cycle/symmetry).

Accuracy, Stability and Resolution:

	Norm	Trig, Gate, Burst		
		f < 1 kHz	f≥1 kHz	
Accuracy	0.001% *	0.001%*	5%	
Stability over 1 hour	± 1x10 ⁻⁶ *	± 1x10-6*	± 5x10-4**	
Stability over 24 hours	± 1x10-6*		± 1x10-3**	
Resolution (digits)	4	4	3	

^{*} Accuracy and stability can be improved by phase locking to an external frequency reference.

≤0.2% at 20/80% duty cycle/symmetry Jitter:

 $\leq 0.1\% (\geq 1 \text{ kHz})$

 $\leq 0.02\%$ (0.1 Hz - 999 Hz), further improvement

at lower frequencies.

Output Characteristics

(50 Ω Source terminated by 50 Ω load unless stated otherwise)

Range: amplitude and offset independently variable within ± 10 V.

Source Impedance: selectable 50 $\Omega \pm 1\%$ or 1 k $\Omega \pm 10\%$, in parallel with 50 pF.

Amplitude:

 $10.0~\text{mV}_{pp}$ to $10.0~\text{V}_{pp},$ $2.00~\text{V}_{pp}$ to $20.0~\text{V}_{pp}$ (1 k Ω into 50 $\Omega).$

Accuracy:	Sine	Square	Triangle (50%)	Ramp (20%, 80%)	Pulse (20%, 80%)
< 1 kHz	± 2%	± 2%	± 2%	± 2%	± 2%
1 kHz – 5 MHz	± 2%	± 2%	± 2%	± 5%	± 2%
5 MHz - 20 MHz	± 5%	± 5%	± 10%	± 10%	± 5%
20 MHz - 50 MHz	± 5%	± 5%	± 5% to –	20% –	_

Resolution: 3 digits.

Offset: $0 \text{ to } \pm 5.00 \text{ V}$,

0 to \pm 10.0 V (1 k Ω into 50 Ω).

Accuracy: ± (1% programmed value + 1% signal Vpp

+ 20 mV).

Resolution: 2 digits (10 to 99 mV), 3 digits (\geq 100 mV).

Baseline Drift (Trig, Gate and Burst modes): $\leq 5\%$ of peak amplitude.

Sine Characteristics (Norm mode):

Harmonic Components: Up to 5 MHz, THD < 1% of fundamental. Above 5 MHz, all harmonics at least 30 dB below fundamental.

Spurious: all non-harmonically related outputs at least 40 dB below fundamental.

Triangle/Ramp Characteristics

Symmetry: 20, 50, 80% selectable.

Linearity: (10% to 90%): ± 1% (up to 5 MHz),

± 5% (above 5 MHz). cont'd. Square/Pulse Characteristics:

Duty cycle: 20, 50, 80% selectable.

Transition times (10% to 90%): < 5 ns.

 $< 7 \text{ ns} (1 \text{ k}\Omega \text{ into } 50 \Omega).$

Preshoot/Overshoot/Ringing: ± 5%,

 $\pm 10\%$ (1 k Ω into 50 Ω).

Operating Modes

Norm: continuous waveform is generated, phase locked to an internal 10 MHz crystal reference.

VCO: external voltage (100 kHz max) from 10 mV to 10 V linearly sweeps 3 decades up to top of decade in which the 8165A frequency is set. Four bands limited to less than 3 decades:

100 mV - 10 V for 100 kHz - 10 MHz

and 10 Hz - 1 kHz.

10 mV - 2 V for 100 kHz - 20 MHz,

50 mV - 5 V for 500 kHz - 50 MHz.

Trig: pos. ext input pulse ≥ 10 ns wide generates one output cycle. Upper level $\geq +250 \text{ mV}$, lower level $\leq 0\text{V}$.

Gate: oscillator enabled when ext input ≥ +250 mV, disabled when ≤ 0 V. First and last output cycles are always complete.

Burst: a preprogrammed number of output cycles is generated. Min. time between bursts 50 ns. Burst length 0 to 9999 cycles. Min. trigger pulse width 10 ns, upper level \geq + 250 mV, lower level \leq 0 V.

FM: $0 \text{ to } \pm 1 \text{ V}$ modulates $0 \text{ to } \pm 1\%$ deviation.

Modulating Frequency: 100 Hz to 20 kHz (Norm mode), dc to 20 kHz (Gate mode with carrier frequency ≥ 1 kHz).

Input Impedance: $10 \text{ k}\Omega$ typical.

AM (Option 002 only): 0 to 2.5 V_{pp} modulates 0 to 100% modulation depth.

Modulating Frequency: dc to 10 MHz (-3 dB).

Input Impedance: $10 \text{ k}\Omega$ typical.

Pulse Modulation: transition times < 50 ns.

Envelope Distortion (dc to 250 kHz mod. freq.):

Carrier	Modulation	Distortion
≤ 1 MHz	0 to 90%	< 1%
> 1 MHz	0 to 30%	< 3%

Carrier Frequency Deviation: < 0.01%, 0 to 30% modula-

Sweep (Option 002 only): provides logarithmic up/down sweep up to 3 decades between limits set on the 8165A. As in VCO mode, 4 bands limited to less than 3 decades Min frequency 1 mHz.

Sweep-rate: 0.01, 0.1, 1, 10, 100, 1000 seconds per decade selectable.

Trigger: one up-down sweep per trigger pulse (upper level \geq +250 mV, lower level \leq 0 V, width \geq 10 ns).

Accuracy: sweep start frequency $\pm (15\% + 0.5\% \text{ of max})$. stop frequency), sweep stop frequency ± 15%.

Resolution: 2 digits.

^{**} After 15 minutes.

Auxiliary outputs and inputs

Ext. Input: external signals used in VCO, Trig, Gate, Burst

and (Option 001) Sweep ext. trig.

Signal range in VCO: 10 mV to 10 V for 3-decade sweep. Signal thresholds in Trig, Gate, Burst, Sweep ext trig:

+250 mV (upper), 0 V (lower).

Max. input: $\pm 20 \text{ V}$,

Input impedance: $10 k\Omega$ typical.

Sync. output: one trigger pulse per main output cycle. Amplitude: 3 V_{pp} into open circuit (1.5 V_{pp} into 50 Ω).

Ext. 10 MHz ref.: external 10 MHz, TTL, system clock. Rear panel switch selects ext or int clock as intrument reference.

Mod Inp: FM and (Option 002 only) AM input.

Signal range in FM:0 to \pm 1 V for 0 to \pm 1% deviation. Signal range in AM: 0 to 2.5 V_{pp} for 0 to 100% modula-

tion depth.

Max. input: ± 20 V.

Input impedance: $10 \text{ k}\Omega$ typical.

Sweep out (Option 002, only): triangular sweep voltage, 0 to 2.99 V amplitude for 3 decades (1 V/decade).

HP-IB capability and microprocessor

Code	Interface Function	Code	Interface Function
SH 1	Source Handshake	SR 1	Service Request
AH 1	Acceptor Handshake	RL 1	Remote/Local
Т6	Talker (basic talker,	PP 0	No Parallel Poll
	serial poll, unaddress	DC 0	No Device Clear
	to talk if addressed	DT 1	Device Trigger
Ì	to listen)	C 0	No Controller
L4	Listener (Basic listener),	E 1	Three-state Bus
	unaddress to listen if		Drivers
	addressed to talk)		

Accuracy: See Frequency and Output Characteristics

Settling times:

Frequency: < 20 ms to $\pm 5\%$ of programmed value. In Norm mode, and in Trig, Gate, Burst at frequencies < 1 kHz: < 70 ms to $\pm 2\%$ of programmed value,

< 300 ms to final value.

Other Functions: 20 ms. The following range changes can take up to 200 ms:

Change of duty cycle.

Selection to or from Sweep/VCO.

Changing up to/down from the following decades:

Frequency 1 kHz, 10 kHz, 100 kHz, 1 MHz, 20 MHz. Amplitude 100 mV, 1 V

Offset 1 V.

Number of bytes sent/received

Listener: up to 65 bytes (89 in Option 002) for one

complete set of operating parameters.

Talker-Learn Mode: 8 lines. Each line up to 16 bytes

plus CR LF. Total: 144 bytes max. Talker-Error Message: 1 byte.

Byte Rate:

Function Time (typical values): set up as talker/listener 1.1 ms, receiving time per character 0.1 ms, processing per parameter 3.0 ms, entry time per digit 2.0 ms, check time per parameter entry 5–10 ms, waveform/duty cycle/modulation 1.0 ms, input mode 6.5 ms, output modes 9.0 ms, recall 25 ms, store 380 ms.

Memory: 10 addressable locations plus one for existing operating state.

Capacity: each location can store a complete set of

operating parameters and modes. Access time: 20 ms each location.

Storage time: internal battery provides memory retention for approx. 4 weeks at room temperature. Battery re-

charges when 8165A is switched on.

General

Power Requirements: 100 V, 120 V, 220 V or 240 V; +5 V to -10%, 48 to 66 Hz, 200 VA max.

Environmental: operates to specifications from 0 to 50°C, and with relative humidity to 95% at 40°C.

Storage: -20 to $+70^{\circ}$ C.

Weight: net 12 kg (26.5 lbs.). Shipping 16 kg (35.3 lbs.).

Dimensions: 426 mm wide, 145 mm high, 450 mm deep (16.8 x 5.7 x 17.7 inches).

Accessories Available: The following cables for interconnecting HP-IB instruments to the bus are available:

10631A 1 m (3.28 ft) 10631C 4 m (13.1 ft) 10631B 2 m (6.56 ft) 10631D 0.5 m (1.64 ft)

The following adapters for connecting to the DUT are available:

15104A Adder/Splitter

15450A Adapter for terminating at DUT
15451A TTL-CMOS Translator. CMOS level
originates from DUT thus protecting it.

OPTIONS

Option 002: Sweep and Amplitude Modulation

Option 907: Front Handle Kit,

p.n. 5061-0089

Option 908: Rack Mounting Kit,

p.o. 5061-0077

Option 909: Combined Front Handle and Rack

Mounting Kit, p.n. 5061-0083

Option 910: extra Operating and Service Manual

Specifications describe the instrument's warranted performance. Supplement characteristics – identified by the word "typical" – are intended to provide information useful in applying the instrument by giving typical, but non-warranted, performance parameters.

Data subject to change